# Floyd算法
图使用二维邻接矩阵存储,若无法到达则置为无穷。
核心代码
void floyd()
{
for (int k = 1; k <= n; k++)
{
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
g[i][j] = min(g[i][j],g[i][k] + g[k][j]);
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
2
3
4
5
6
7
8
9
10
11
12
13
最外一层k表示遍历中介点,每个顶点都要作为中介点去运算全局所有顶点
如果
g[i][j]>g[i][k]+g[k][j]
1就是说k作为中介点,从i到j通过k比不通过k权值要小,就更新权值。表明有更加合适的路径使权值变小。
比如上图从B到G通过中介A的话会使权值从正无穷变为26
例题
AC代码:
#include<bits/stdc++.h>
using namespace std;
const int maxnum = 110, far = 99999; //far为默认无穷远
int g[maxnum][maxnum], n, m;
void floyd()
{
for (int k = 1; k <= n; k++)
{
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
g[i][j] = min(g[i][j],g[i][k] + g[k][j]);
}
}
}
}
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
if (i != j)
g[i][j] = far; //当i=j时,g[i][j]=0
}
}
for (int i = 0; i < m; i++)
{
int a, b, c;
cin >> a >> b >> c;
g[a][b] = g[b][a] = c;
}
floyd();
int maxdis = far, ansnum = 0;
for (int i = n; i >= 1; i--)
{
int now = 0; //now代表i节点到最远节点的长度
for (int j = 1; j <= n; j++)
{
now = max(now, g[i][j]);
}
if (now <= maxdis)
{
maxdis = now;
ansnum = i;
}
}
if (maxdis == far)
cout << "0" << endl;
else
cout << ansnum << " "<< maxdis << endl;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60