Floyd算法

12/4/2021 Datastructure

# Floyd算法

​ 图使用二维邻接矩阵存储,若无法到达则置为无穷。

image-20211126121639512

核心代码

void floyd()
{
	for (int k = 1; k <= n; k++)
	{
		for (int i = 1; i <= n; i++)
		{
			for (int j = 1; j <= n; j++)
			{
				g[i][j] = min(g[i][j],g[i][k] + g[k][j]);
			}
		}
	}
}
1
2
3
4
5
6
7
8
9
10
11
12
13

最外一层k表示遍历中介点,每个顶点都要作为中介点去运算全局所有顶点

如果

g[i][j]>g[i][k]+g[k][j]
1

就是说k作为中介点,从i到j通过k比不通过k权值要小,就更新权值。表明有更加合适的路径使权值变小。

比如上图从B到G通过中介A的话会使权值从正无穷变为26

例题

image-20211126194542663

image-20211126194603368

AC代码:

#include<bits/stdc++.h>

using namespace std;

const int maxnum = 110, far = 99999;		//far为默认无穷远
int g[maxnum][maxnum], n, m;

void floyd()
{
	for (int k = 1; k <= n; k++)
	{
		for (int i = 1; i <= n; i++)
		{
			for (int j = 1; j <= n; j++)
			{
				g[i][j] = min(g[i][j],g[i][k] + g[k][j]);
			}
		}
	}
}

int main()
{
	cin >> n >> m;
	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= n; j++)
		{
			if (i != j)
				g[i][j] = far;	//当i=j时,g[i][j]=0
		}
	}

	for (int i = 0; i < m; i++)
	{
		int a, b, c;
		cin >> a >> b >> c;
		g[a][b] = g[b][a] = c;
	}
	floyd();
	int maxdis = far, ansnum = 0;
	for (int i = n; i >= 1; i--)
	{
		int now = 0;		//now代表i节点到最远节点的长度
		for (int j = 1; j <= n; j++)
		{
			now = max(now, g[i][j]);
		}
		if (now <= maxdis)
		{
			maxdis = now;
			ansnum = i;
		}
	}
	if (maxdis == far)
		cout << "0" << endl;
	else
		cout << ansnum << " "<< maxdis << endl;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Last Updated: 10/28/2024, 3:08:38 PM